前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇高層建筑結構設計要點范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
1高層建筑結構設計的特點分析
(1)水平力是設計的決定性因素。在低層或者多層的建筑結構設計中,常常用重力為代表的豎向荷載去控制建筑物的結構。然而,在高層建筑中,雖然豎向荷載能起到一定的控制作用,但是水平荷載在其中卻起著決定性的作用,因而不能忽視。使得水平荷載比豎向荷載更起決定性作用的主要原因在于,高層建筑物的自身重量和使用荷載在豎向構件中能夠引起的軸力和彎矩的數值,僅僅與建筑物的高度一次方成正比,而水平荷載對結構產生的傾覆力矩以及在豎向構件中引起的軸力,與建筑高度兩次方成正比。
(2)側移是設計的重要控制指標。在高層建筑結構設計中,結構側移是高樓結構設計中的重要控制因素,這一點與低層建筑不一樣。當樓房的高度不斷增加的時候,水平荷載下的結構側移變形會逐漸拉大,這就給高層建筑的穩定性造成了一定的影響。因此,在設計高層建筑結構的時候,應該將水平荷載作用下的側移控制在一個限度之內。
(3)抗震設計要求較高。在高層建筑結構設計中,對于抗震設計的要求顯得更高。一般來說,除了要求抗震設防的高層建筑有普通的豎向荷載、風荷載以外,還應該促進結構設計具有良好的抗震性能,達到小震不壞,大震不倒的目的。
(4)軸向變形需加以重視。在高層建筑中,豎向荷載數值變大的時候,會在柱內產生較大的軸向變形,使得連續梁彎矩發生變化,讓連續梁之間支座處的負彎矩值變小,還會對預制構件的下料長度造成影響。因此,在進行高層建筑結構設計的時候,要對軸向變形的數據進行仔細計算,對下料長度進行有效的調整,防止高層建筑的軸向變形數據不斷拉大。
2 高層建筑結構設計的原則
高層建筑結構的設計是一個復雜繁瑣的內容,其中需要注意的內容涉及也十分廣泛,根據多年的工作經驗總結,主要集中在以下幾個方面:
2.1結構方案的選擇
合理的結構設計方案對于工程來講是十分關鍵的,好的設計方案在滿足結構形式和體系的基礎上,還要充分考慮造價成本,把經濟適用發揮到最大程度。結構體系的最基本的原則是受力明確、傳力簡單,結構方案在滿足使用、安全要求的基礎上,盡量的簡潔。最終結構方案的確定,需要對地理條件、工程設計需求、材料的選擇和施工條件等進行全面的考量和整合,并且和建筑水、暖、電各個分項相互協調,綜合各方面因素進行最后的確定。
2.2計算簡圖的選擇
計算簡圖是進行高層建筑結構設計的基礎,是所有計算數據的出處和根源所在。關系到各環節的建筑尺寸和誤差。如果不能選擇合理的計算簡圖,對于結構安全就會埋下隱患。因此,高層建筑結構設計的安全保障前提,就是合理計算簡圖的選擇。同時,在選擇了計算簡圖之后,還應該采用相應的構造方法保證其安全性。在結構的實際施工中,結構節點不單單是鋼節點或者鉸接點,要使得計算簡圖的誤差在規定的允許范圍之內。
2.3 計算結果要進行準確的分析
科技的發展也推動建筑領域不斷的進步,計算機作為現在科技發展的集中產物,自然在建筑結構設計中也得到了廣泛的應用。經過幾年的發展,市場上的計算機軟件種類和數量都大大提升,但問題也隨之涌現出來,很多時候,統一種類的計算數據在不用軟件中處理產生的結果并不一致。這就對計算數據的準確程度提出了嚴苛的校對要求,也對結構設計人員的能力提出了更高水平的要求。在全面了解軟件的使用范圍和條件的基礎上,選擇最為合理準確的軟件也成為設計人員必須完成的課題。與此同時,建筑結構受到各種不可掌控的實際情況制約,與計算機得出的理想結果不能達到完全的吻合,因此在計算機輔助設計的同時,設計人員的主導能力還是最為關鍵的。
3高層建筑結構設計中關鍵要點分析
(1)扭轉問題設計。要求高層建筑的結構設計必須三心盡可能匯于一點,即建筑結構的剛度中心、幾何形心、結構重心三心合一。倘若在設計中未很好地做到三心匯聚一點,建筑易發生扭轉問題,并在水平力作用下造成高層建筑結構的毀壞。
(2)抗風結構設計。高層建筑由于其具有樓層多,高度高的特點,因此相比較其他建筑,在建筑物表面更易改變風的流動性和空氣的動力效應。在樓層柔軟部分風和空氣會產生動力形式和靜力形式,并由此產生的震動,會對樓層的墻體、裝飾結構以及支撐結構產生破壞,危害建筑的穩定性,所以在進行高層結構設計的過程中,應該進行抗風結構的設計,杜絕建筑物在自然因素的影響下留下隱患。
4高層建筑結構設計問題的有效對策
4.1合理設計平面布局
高層建筑結構設計過程中,扭轉問題出現的原因是由于三心未合一導致的建筑物質量分布不均勻。所以在設計過程中,相關設計人員對高層建筑應當采用相對規則的圖形,例如正方形、矩形、圓形、正多邊形等較為簡單、分布均衡的平面形式。盡量不采用L形、T形、十字形等復雜平面形式。在環境要求或結構要求特殊情況下,應當根據相應規范進行設計,避免建筑結構突出部分過大,同時盡量保證結構的對稱性。
4.2優化抗風結構設計方案
針對高層建筑結構抗風結構存在的難點和問題進行優化。一是基礎優化。要保證高層建筑結構的抗風性良好,首先要保證高層結構的基礎牢固。二是增加高層建筑耗能結構設計。在高層建筑結構設計過程中,對相應非承重構件利用耗能構件如樓板、剪力墻等來抵消風能對建筑的影響。三是減小水平荷載和風力疊加對高層建筑的影響。四是增大結構承載力和抗風力。根據相關數據進行高層建筑結構承載力驗算和抗風力驗算,在此基礎上制定一個放大系數,進一步保證高層結構的抗風性能。
4.3優化抗震結構設計方案
當今高層建筑結構的抗震設計存在很多問題和難點,結合相關設計經驗總結了集中抗震結構的優化方案。一是合理布置抗側力構件。二是增加地基抗震能力。三是設計高性能剪力墻。高性能剪力墻的設計能夠有效地提高剪力墻在地震過程中吸收建筑內力的能力,可以適當增加墻體和樓板的剛度來控制建筑位移,達到抗震目的。四是進行高層結構構件的簡化和一體化。通過對扶壁、筒口、筒腳的簡單化設置,達到相應建筑物的對稱。
4.4加強消防結構設計
當下很多大型火災、恐怖襲擊等惡劣事件已經讓高層建筑的消防結構設計面臨必須改善和加強的地步,但是消防設計應該從消防結構設計和使用期間消防規范來共同執行。在高層建筑消防結構設計過程中,應該加強對防火結構間的距離控制,在符合當地的地形條件基礎上,高層結構在防火結構間距離上可適當加大處理。在材料使用上,可以盡量減少易燃材料的使用,同時增加耐火材料的運用來達到防火目的。另外,良好的疏散系統是保證火災發生之后減少人員損傷的重要保證。高層建筑的疏散系統呈垂直狀態,容易導致疏散效率不高的問題出現。在消防結構設計時,可以通過設置雙通道疏散,增設防煙區、耐火區、避難層等設施來增加消防能力。同時,高層結構可以通過設置相應的隔離結構來有效地控制火勢蔓延,增強建筑消防安全能力。
參考文獻:
[1]柳奕成.高層建筑混凝土結構設計[J].江西建材,2014(04):20-21.
關鍵詞:高層建筑 建筑結構 設計要點
中圖分類號:TU97文獻標識碼: A 文章編號:
隨著社會經濟的迅速發展和建筑功能的多樣化, 城市人口的不斷增多及建設用地日趨緊張和城市規劃的需要, 促使高層建筑得以快速發展。高層建筑結構設計給工程設計人員提出了更高的要求, 作為一個龐大復雜的系統,高層建筑的結構設計,一方面要滿足包括抗震,抗風等在內的安全性能的要求,另一方面,也要滿足高層建筑結構的科學性和合理性。
一、高層建筑結構設計的意義及依據
1.概念設計的意義
高層建筑能做到結構功能與外部條件一致,充分展現先進的設計,發揮結構的功能并取得與經濟性的協調,更好地解決構造處理,用概念設計來判斷計算設計的合理性。
2.概念設計的依據
高層建筑結構總體系與各分體系的工作原理和力學性質,設計和構造處理原則,計算程序的力學模型和功能,吸取或不斷積累的實踐經驗。
二、高層建筑結構設計的原則
1. 選擇合理的高層建筑結構計算簡圖
在計算簡圖基礎上進行高層建筑結構設計的計算,如果選擇不合理的計算簡圖,那么就比較容易造成由于結構安發生的事故,基于此,高層建筑結構設計安全保證的前提是合理的計算簡圖的選擇。同時,計算簡圖應該采用相應的構造方法保證安全。在實際的結構中,其結構節點不單是鋼節點或者餃節點,保證和計算簡圖的誤差在規范規定的范圍內。
2. 選擇合理的高層建筑結構基礎設計
按照高層建筑地質條件進行基礎設計的選擇。綜合分析高層建筑上部的結構類型與荷載分布情況,考慮施工條件,相鄰的建筑物的影響等各個因素,在此基礎上選擇科學合理的基礎方案。基礎方案的選擇應該使得地基的潛力得到最大程度的發揮,必要的時候要求進行地基變形的檢驗。高層建筑設計要有詳細的地質勘查報告,如果缺失,那么應該進行現場勘查并參考相鄰建筑物的有關資料。一般情況下,相同結構單元應該采用相同的類型。
3. 選擇合理的高層建筑結構方案
合理的結構設計方案必須滿足經濟性的要求,并且要滿足結構形式和結構體系的要求。結構體系的要求是受力明確,傳力簡單。在相同的結構單元當中,應該選擇相同結構體系,如果高層建筑處于地震區,那么應力需要平面和豎向的規則。在進行了地理條件,工程設計需求,施工條件,材料等的綜合分析的基礎上,并和建筑包括水,暖,電等各個專業的相協調的情況下,選擇合理的結構,從而確定結構的方案。
4. 對計算結果進行準確的分析
隨著科技的不斷進步,計算機技術被廣泛的應用在建筑結構的設計中。當前市場上存在著形形的計算軟件,采用不同的軟件得到的結果可能不同,所以,建筑結構設計人員在全面了解的軟件使用的范圍和條件的前提下,選擇合適的軟件進行計算。由于建筑結構的實際情況和計算機程序并不一定完全相符,所以進行計算機輔助設計的時候,出現人工輸入誤差或者因為軟件本身存在著缺陷使得計算結果不準確的問題,基于此,結構設計工程師在得到了通過計算機軟件得到的結果以后,應該進行校核,進行合理判斷,得出準確結果。
5. 高層建筑的結構設計要采用相應構造措
施高層建筑結構設計的原則是強剪切力弱彎變,強壓力弱拉力,強柱弱梁。高層建筑結構設計過程中把握上述原則,加強薄弱部位,對鋼筋的執行段錨固長度給予重視,并且要重點考慮構件延性的性能和溫度應力對構件的影響。
三、高層建筑結構設計問題分析
1. 高層建筑結構受力性能
對于一個建筑物的最初的方案設計,建筑師考慮更多的是它的空間組成特點,而不是詳細地確定它的具體結構。建筑物底面對建筑物空間形式的豎向穩定和水平方向的穩定都是非常重要的,由于建筑物是由一些大而重的構件所組成,因此結構必須能將它本身的重量傳至地面,結構的荷載總是向下作用于地面的,而建筑設計的一個基本要求就是要搞清楚所選擇的體系中向下的作用力與地基土的承載力之間的關系,所以,在建筑設計的方案階段,就必須對主要的承重柱和承重墻的數量和分布作出總體設想。
2. 高層建筑結構設計中的扭轉問題
建筑結構的幾何形心、剛度中心、結構重心即為建筑三心,在結構設計時要求建筑三心盡可能匯于一點,即三心合一。結構的扭轉問題就是指在結構設計過程中未做到三心合一,在水平荷載作用下結構發生扭轉振動效應。為避免建筑物因水平荷載作用而發生的扭轉破壞,應在結構設計時選擇合理的結構形式和平面布局,盡可能地使建筑物做到三心合一。在水平荷載作用下,高層建筑扭轉作用的大小取決于質量分布。為使樓層水平力作用沿平面分布均勻,減輕結構的扭轉振動,應使建筑平面盡可能采用方形、矩形、圓形、正多邊形等簡面形式。在某些情況下,由于城市規劃對街道景觀的要求以及建筑場地的限制,高層建筑不可能全部采用簡面形式,當需要采用不規則L形、T形、十字形等比較復雜的平面形式時,應將凸出部分厚度與寬度的比值控制在規范允許的范圍之內,同時,在結構平面布置時,應盡可能使結構處于對稱狀態。
3. 高層建筑結構存在著超高的問題
基于高層建筑抗震的要求,我國的建筑規范對高層建筑的結構的高度有嚴格的規定,針對高層建筑的超高問題,在新規范中不但把原來限制的高度規定為A級高度,并且增加了B 級高度,使得高層建筑結構處理設計方法和措施都有了改進。實際工程設計中,對于建筑結構類型的改變對高層超高問題的忽略,在施工審圖時將不予通過,應該重新進行設計或者進行專家會議的論證等。在這種情況下,整個建筑工程的造價和工期都會受到極大的影響。
4. 高層建筑結構設計短肢剪力墻設置
我國建筑新規范中,短肢剪力墻是指墻肢的截面的高度和厚度比在5~8 的墻,按照實際經驗以及數據,高層建筑結構設計中增加了對短肢剪力墻的使用限制。所以,在高層建筑的結構設計中,必須盡可能的減少或者避免使用短肢剪力墻。
5. 高層建筑結構設計嵌固端的設置
一般情況下,高層建筑配有兩層或者兩層以上的地下室或者人防。高層建筑的嵌固端一般設置在地下室的頂板或者人防的頂板等位置。因此,結構工程設計人員應該考慮嵌固端設置會可能帶來的問題。考慮嵌固端的樓板的設計;綜合分析嵌固端上層和下層的剛度比,并且要求嵌固端上層和下層的抗震的等級是一致的;高層建筑的整體計算時充分考慮嵌固端的設置,綜合分析嵌固端位置和高層建筑結構抗震縫隙設置的協調。
6. 高層建筑結構的規則性
在關于高層建筑的新規范中,對于高層建筑結構的規則性做出了很多限制,比如規定了結構嵌固端上層和下層的剛度比,平面規則性等等,并且硬性規定了“高層建筑不能采用嚴重不規則的設計方案。”因此,為了避免后期施工設計階段的改動,高層建筑結構的設計必須嚴格遵循規范的限制條件。
結束語:
隨著高層建筑進一步的發展,高層結構的設計越發重要起來,結構設計是一項集結構分析,數學優化方法以及計算機技術于一體的綜合性技術工作,是一項對國家建設有重大意義的工作,同時,亦是一門實用性很強的工作。為了革新高層建筑,體現其魅力,追求新的結構形式和更加合理的力學模型將是土木工程師們的目標和方向。
參考文獻:
[1]何俊旭.高層建筑結構設計及結構選型探討[J].價值工程,2010.2:214.
[2]田龍.淺談高層建筑的結構設計[J].價值工程,2011.1:99.
關鍵詞:高層建筑;結構設計;結構體系;抗震設計
隨著我國城市化建設腳步不斷加快,城市人口增加,規模變大,導致城市中用地越來越緊張,所以高層建筑的建設越來越站建筑中的主要地位,建筑行業的不斷發展,人們對建筑質量的要求也會越來越高。尤其高層建筑,高度不同于一般建筑,所以結構設計方面的要求也比較高,結構合理是保證高層建筑質量合理的關鍵性因素。所以,在高層建筑設計中,不僅要保證美觀,是要在保障結構合理的基礎上在追求外觀美。所以,要明確結構設計的要點。
1.高層建筑結構工程特點
高層建筑結構由于建筑高度特殊性導致建筑受力較特殊,所以有其獨特的結構特點。高層建筑的開發可以節約土地資源,但是高層建筑的結構設計卻比一般建筑要難,不僅要保證結構整體性,還要保證抗震能力。梁、板、柱、墻和基礎等是構成建筑形體的力學構件和體系。所以,在結構設計中要保證它們的整體協調性,正確對構件進行選擇,才是保證整個建筑質量的重要環節。
2.高層建筑結構體系
2.1框架結構體系
框架結構體系是高層建筑結構體系中的一種。它是由梁、柱構件通過節點連接構成承載結構。框架結構的特點是體系在平面的布置中比較靈活,但是其占用的空間比較大,需要較大的空間來安排。近年來,由于建筑層數的增加,建筑高度不斷變高,導致框架結構所承受的彎矩和剪力也隨之而增加,所以,在結構的配料上就要進行相關的改進,配料的增加導致結構自身重量增加,占用的空間更大,所以,在空間處理上會出現一系列的問題,在成本造價方面也會不經濟。導致使用受限。
2.2剪力墻體系
剪力墻體系是另外一種結構體系。一般用于鋼筋混凝土結構中,由墻體承受全部水平作用和豎向荷載。在承受水平力的作用時,剪力墻相當于一根下部嵌固的懸臂深梁。它與框架結構相比,它的特點就是剛度比較好,不易變形,空間整體性好,在鋼材的使用上比較節省,成本方面比較經濟,空間處理也比較容易,在抗震設計上,由于不易變形,所以能夠較好地滿足抗震要求。
2.3框架-剪力墻體系
框架剪力墻體系是一種綜合性較強的體系結構。此種體系是把框架和剪力墻兩種結構組合在一起形成的體系。房屋的豎向荷載分別由框架和剪力墻共同承擔,而水平作用主要由抗側剛度較大的剪力墻承擔。框架剪力墻結構體系擁有兩種結構的優點,在空間布置中,比較靈活,而且使用方便,在抗震設計上,剛度大抗震能力較強,所以這種結構在高層建筑中得到廣泛的應用,能夠很好的保障高層建筑的穩定性與抗震能力。
2.4筒體體系
將剪力墻在平面內圍合成箱形,形成一個豎向布置的空間整體受力的框筒,這就是所謂的筒體體系。近年來由于高層建筑的高度不斷的創新,建筑結構設計受到前所未有的挑戰。上訴三種結構由于結構自身特點,當層數超過一定限度后,就會導致結構要求的增強,承載力,抗震能力要求更高,所以,筒體結構體系的應用越來越受到重視,它可以較好地滿足高層建筑在各種受力下的要求。具有很好的抗震能力,而且較其他結構來說,經濟合理,成本較低。
3.高層建筑結構設計要點
3.1防止截面鋼筋超配
要保障結構的合理性就要保證結構構件質量合格。高層建筑的設計要點中,抗震能力的設計比較重要,要使高層建筑在遭遇強烈地震時具有很強的抗倒塌能力,最理想的辦法是使結構中所有的構件都具有很高的延性。要提高構件的延性,適宜性比較困難的工程,在實際工程中很難完全做到這一點,但是保證構件的延性是保證高層建筑抗震能力的基礎,所以,在設計中,可以根據不同類型不同高度的高層建筑進行不同的構件延性的提高。要使結構能進入彈塑性狀態,并能通過結構的塑性變形吸收地震能量、抗御更高烈度的地震,就必須做到“強柱弱梁、強剪弱彎、強節點弱桿件”,才能使結構在進入彈塑性狀態后形成合理的延性較大的屈服機制。構件的承載力大小受到配筋的影響,所以配筋的用量要適當。
3.2保證高層建筑的整體穩定性
高層建筑由于高度大,所以受風荷載的影響比較大,要保證其整體穩定性是關鍵。在地震發生時,如果整體穩定性差,整個建筑都可能發生倒塌。所以在設計時,要進行對整個建筑進行抗傾覆穩定性驗算,使地震作用下的傾覆力矩與相應的重力荷載在基礎與地基交界面上的合力作用點,不應超出力矩作用方向抗傾覆構件基礎邊長的 1/4。其次,建筑的高寬比也是影響建筑穩定性的因素,加大建筑物下部幾層的寬度,使其滿足規范高寬比的限值,從而保證上部結構的穩定。此外,穩定的基礎是最重要的,要保證基礎的埋設深度達到要求,埋設的深度要根據建筑高度進行相關的計算,要保證計算準確無誤。每一個環節都很重要,都要嚴格要求,才會保障整個建筑的質量。
3.3剪力墻設計
剪力墻的合理設計也是保證整體結構合理的關鍵。規范規定,剪力墻在端部應設置暗柱、端柱等邊緣構件。這些邊緣構件的作用相當于磚混結構的約束柱,當結構的剛度較小,地震作用下層間位移和頂點位移較大時,邊緣構件所起的作用也就越大,此時暗柱的截面和配筋就應加大。所以,在剪力墻設計中要注意,要根據結構要求進行尺寸與配筋的選擇,不能隨意進行配筋。
3.4地下室的設計
地下室對于高層建筑來說,雖不外露,但是在結構中卻承擔著重要責任。一般情況下,地下室外墻所承受的主要荷載為結構自重、地面活載、側向土壓力等。由于地下室有其獨特的環境,結構也就不同于外部,在進行設計的時候,要綜合考慮各個因素的影響,權衡成本,在保證結構合理的基礎上還要保證經濟。地下室結構設計中,外墻的設計比較關鍵。地下室外墻的受力狀況與上部結構類型及平面布置有很大關系。所以在設計時,要仔細考慮分析受力特點,結合上部結構類型,以及平面布置特點,對外墻結構綜合設計。例如,當上部結構為框架結構時,上部填充砌體及±0.00 樓板對地下室外墻頂端的約束程度很小,此時可假定墻體頂端為鉸接。當上部結構為鋼筋混凝土剪力墻結構時,剪力墻及±0.00 樓板對地下室外墻頂部的約束程度很大,此時可假定墻壁頂端為固接。這些專業性較強的結構知識都要有所考慮,所以設計者要有綜合性的知識,保證結構的每一部分的合理性。
4.結語
總而言之,高層建筑是未來建筑的發展主要趨勢,為了保證人民生命財產安全,保證高層建筑質量,就要保證結構設計合理規范,它是直接影響高層建筑的質量因素。為此就要求相關結構設計工作人員以及監管人員在過程中發揮作用,嚴格要求,對過程中出現的問題要及時總結并采取有效對策進行解決,保證結構的合理性,穩固性,保障高層建筑質量合格,達到國際化標準,為高層建筑行業的長遠發展打好基礎。
參考文獻:
[1]容柏生,國內高層建筑結構設計的若干新進展[J] 建筑結構,2007,(9)
關鍵詞:復雜高層 ;超高層建筑 ;建筑結構 ;設計 ;
中圖分類號:TU97 文獻標識碼:A 文章編號:
我國復雜高層及超高層建筑不斷崛起,建筑企業為了提高自身企業在建筑市場中的競爭力,對復雜高層及超高層建筑結構設計也有了更高的要求。復雜高層及超高層建筑結構設計中包含了諸多設計方面及影響因素,在設計施工前要根據高層建筑規范要求及實際情況進行科學合理的設計分析,確保建筑結構設計施工的科學性合理性,從而提高復雜高層及超高層建筑的安全性能,促使建筑企業走向一個新的里程碑。
復雜高層及超高層建筑結構設計中的抗震設計分析
復雜高層及超高層建筑相對于普通建筑而言,具有一定的特殊性,復雜高層及超高層建筑結構較為繁雜,且具有一定的高度,若出現緊急情況或者是地震自然災害等不易救援,在這種情況下在復雜高層及超高層建筑中進行抗震設計就顯得尤為必要。評價一個復雜高層建筑或者是超高層建筑結構抗震設計是否合格,可以從以下兩方面進行分析:
1.抗震設計時要保證其為彈性狀態
復雜高層建筑及超高層建筑倘若出現地震自然災害由于其海拔過高必然會影響到周圍的建筑物,給城市帶來一定高的災害,對其進行抗震設計是防患于未然的一種措施,在抗震設計中保持其為彈性狀態,能夠降低地震對建筑物的損壞率。
抗震倒塌設計
在復雜高層建筑及超高層建筑結構抗震設計中,要對建筑所能承受的地震振動侵害的大小,對其最大地震振動進行計算分析,能夠在一定程度上降低地震災害的侵害程度。其次,對于地震結構設計中的延性構件進行合理設計,其非彈性變形的能力不得超過其本身的變形能力,而對于非延性構件,其承受地震自然災害的抗壓力應該大于其本身建筑所能承受的壓力,不論是復雜高層建筑結構設計還是超高層建筑結構設計,都要對其構件進行合理的控制,保持抵抗地震自然災害的彈性。
復雜高層及超高層建筑結構設計要點分析
復雜高層及超高層建筑在建筑施工中相比普通建筑而言,具有一定的難度,其工程量較大,樓層較高,所以在建筑結構設計中要遵循一定的施工要求,準確把握施工要點,這樣才能提高施工質量,保證復雜高層建筑及超高層建筑的安全性及穩定性,以下筆者根據諸多建筑企業進行復雜高層及超高層建筑結構設計施工中所總結的建筑結構設計要點:
重視建筑結構概念設計,著眼整體
復雜高層及超高層建筑其施工程序較為繁雜,在對其進行施工設計時,需要全面把握其結構概念,重視復雜高層及超高層建筑結構的概念設計,要做好復雜高層及超高層建筑結構概念設計,首先,應該從建筑的規則性及均勻性著手,在實際施工中要重視建筑施工中的對稱性,保證建筑整體的美觀;其次,結構設計中需要多個施工人員的配合,所以在建筑結構概念設計中要注重傳力途徑的建設,要保證施工中有一條清晰直接的通道實現傳力,在傳力途徑建設中主要從結構豎向傳力及抗側立傳力兩方面出發;再者,在建筑結構設計施工中,要把握好復雜高層及超高層建筑的整體性,它在一定意義上直接體現了建筑企業的施工水平,另外我國提倡節能減排,建筑企業要想適應這一形勢,在超高層建筑結構設計施工中就要融入節能減排的理念,在建筑物內部安裝節能設備。
合理選擇抗側力結構體系
抗側力結構設計是復雜高層及超高層建筑結構設計中的重要組成部分,良好的抗側力結構設計能夠提高復雜高層及超高層建筑的安全性能,為用戶提供良好的居住或辦公環境,因此在建筑結構設計施工中一定要合理選擇抗側力結構體系。選擇合理的抗側力結構需要了解建筑的實際高度進行科學的分析選擇,另外在整個結構設計中要盡量使抗側力結構體系中的各構件緊密連接在一起,保證其內部構件的整體性。結合建筑實際狀況對每種抗側力結構體系進行分析,了解其在建筑結構設計中所發揮的作用,根據復雜高層及超高層建筑的不同特點及當地的地理環境從而選擇正確的抗側力結構設計方法。
注重抗震設計各個環節的把握
抗震設計是復雜高層及超高層建筑結構設計的重中之重,它直接關系著建筑整體的安全性及穩定性,是確保建筑安全的重要環節,因此在復雜高層及超高層建筑結構設計中一定要嚴格把控抗震設計中的各個環節,提高抗震設計各個環節的合理性與科學性。在抗震設計中對抗震材料的選擇是十分重要的,它在一定程度上直接影響了抗震設計的抗震性能,選擇抗震材料要根據復雜高層或者是超高層建筑的特點進行購買,針對不同的高度選擇抗震性能等級不同的材料。在建筑結構抗震設計施工前,要擬定行之有效的設計方案,確定建筑結構的變形彈性,在抗震施工中對其變形彈性的把控需要符合地震預期要求,另外還需要合理控制地震作用下的層間位移,進行層位位移在一定程度上能夠降低地震給建筑帶來的侵害。
全面了解所要設計的建筑結構特點才能準確把握結構設計的要點,在抗震設計中要科學對建筑結構的變形及結構位移進行科學的研究分析,精確兩者之間的連帶關系,從而更好的進行抗震結構設計,提高復雜高層及超高層建筑的安全性能,延長復雜高層及超高層建筑的使用壽命。倘若該建筑處于地震災害的常發地區,應該進行多方面抗震設計,提高其抗震延性,增強復雜高層及超高層建筑的抗壓力,減少因地震災害而出現建筑倒塌事件的發生。
建筑結構抗震設計的質量及方法從一定意義上來講直接決定了其抗震能力及效果,在整個建筑結構抗震設計中,設計人員一定要按照高層抗震設計的相關規定,而后再結合超高層及復雜高層建筑所在的具置,周邊環境進行分析,從而制定出符合建筑結構施工要求的抗震設計方案,以便后期施工人員抗震結構設計施工的順利進行。抗震設計對復雜高層及超高層建筑結構設計具有重要的意義,良好的抗震性能能夠降低降低地震自然災害對建筑的侵害,確保建筑的安全,從而保證住戶的人身安全。
總結
復雜高層及超高層建筑與普通建筑相比,施工難度大,注意事項較多,所以要做好復雜高層及超高層建筑結構設計,要結合復雜高層建筑或者超高層建筑所在的地理位置及特點進行全方位的結構概念設計,制定科學合理的設計方案,從而保證設計人員順利進行結構設計施工建設,提高復雜高層及超高層建筑的結構設計水平,從而確保整個建筑的安全質量,為住戶或者辦公者提供良好的建筑環境。
參考文獻:
[1]陳惠信.對超高層建筑結構設計技術要點的探討[J].中國建筑工業出版社,2012,10(5):116-118
[2]陳天虹;林英舜;王鵬種.超高層建筑中結構概念設計的幾個問題[J].建筑技術,2011,10(5):357-359
[3]黃鶴.復雜高層與超高層建筑結構設計要點探討[J].才智,2012,6(12):45-48
關鍵詞:高層 結構設計 要點探討
高層建筑結構設計的意義和依據
1、概念設計的意義。高層建筑能做到結構功能與外部條件一致,充分展現先進的設計,發揮結構的功能并取得與經濟性的協調,更好地解決構造處理,用概念設計來判斷計算設計的合理性。2、概念設計的依據。高層建筑結構總體系與各分體系的工作原理和力學性質,設計和構造處理原則,計算程序的力學模型和功能,吸取或不斷積累的實踐經驗。
二、高層建筑結構設計的幾個要點分析1、高層建筑結構受力方面對于一個建筑物的最初的方案設計,建筑師考慮更多的是它的空問組成特點,而不是詳細地確定它的具體結構。 建筑物底面對建筑物空間形式的豎向穩定和水平方向的穩定都是非常重要的,由于建筑物是由一些大而重的構件所組成,因此結構必須能將它本身的重量傳至地面,結構的荷載總是向下作用于地面的,而建筑設計的一個基本要求就是要搞清楚所選擇的體系中向下的作用力與地基土的承載力之間的關系,所以,在建筑設計的方案階段,就必須對主要的承重柱和承重墻的數量和分布作出總體設想。 對于低層、多層和高層建筑,豎向和水平向結構體系的設計基本原理都是相同的,但是,隨著高度的不斷增加。豎向結構體系成為設計的控制因素,其原因有兩個:其一,較大的垂直荷載要求有較大的柱、墻或者井筒;其二,側向力所產生的傾覆力矩和剪切變形要大得多。
與豎向荷載相比,側向荷載對建筑物的效應不是線性增加的,而隨建筑高度的增高迅速增大。例如,在所有條件相同時,在風荷載作用下,建筑物基底的傾覆力矩近似與建筑物高度的平方成正比,而其頂部的側向位移與高度的四次方成正比,地震的作用效應更加明顯。在高層建筑中,問題不僅僅是抗剪,而更重要的是整體抗彎和抵抗變形,可見,高層建筑的結構受力性能與低層建筑有很大的差異。
2、地基與基礎設計方面地基與基礎設計一直是結構工程師比較重視的方面,不僅僅由于該階段設計過程的好與壞將直接影響后期設計工作的進行,同時,也是因為地基基礎也是整個工程造價的決定性因素,因此,在這一階段,所出現的問題也有可能更加嚴重甚至造成無法估量的損失。 在地基基礎設計中要注意地方性規范的重要性問題。由于我國占地面積較廣,地質條件相當復雜,作為國家標準,僅僅一本《地基基礎設計規范》無法對全國各地的地基基礎都進行詳細的描述和規定,因此,作為建立在國家標準之下的地方標準。地方性的“地基基礎設計規范”能夠將各地方的地基基礎類型和設計處理方法等一些成熟的經驗描述和規定得更為詳細和準確,所以,在進行地基基礎設計時,一定要對地方規范進行深入地學習,以避免對整個結構設計或后期設計工作造成較大的影響。
3、砌體結構設計方面(1)底層框架――剪力墻砌體結構挑梁裂縫問題。底層框架剪力墻砌體結構房屋是指底層為鋼筋混凝土框架――剪力墻結構,上部為多層砌體結構的房屋。該類房屋多見于沿街的旅館、住宅、辦公樓,底層為商店,餐廳、郵局等空間房屋,上部為小開間的多層砌體結構。這類建筑是解決底層需要一種比較經濟的空間房屋的結構形式。部分設計者為追求單一的建筑立面造型來增加使用面積,將二層以上的部分橫墻且外層挑墻移至懸挑梁上,各層設計有挑梁,但實際結構的底層挑梁承載普遍出現裂縫,該類挑梁的設計與出現裂縫在臨街砌體結構房屋中比較常見。原因是原設計各層挑梁均按承受本層樓蓋及其墻體的荷載進行計算。但實際結構中,懸挑梁上部墻體均為整體砌筑,且下部墻體均兼上層挑梁的底摸,這樣挑梁上部的墻體及樓蓋的荷載實際上是由上往下傳遞。上述挑梁的設計計算與實際工程中受力及傳力路線不符是導致底層挑梁承載力不足并出現受力裂縫的主要原因,解決的辦法要么改變計算簡圖及受力路線,要么注意施工順序和施工工序。(2)砌體結構布置方式及抗震分析。第一,橫墻承重的結構布置:一般房屋為矩形平面,其橫向剛度遠小于縱向剛度, 因此有足夠數量的橫墻,是提高結構抗震性能的主要途徑。由震害可知,墻體多為剪切破壞,因此,為了提高橫墻的抗震能力,必須提高其抗剪強度。主要措施是提高材料的強度等級,增加橫墻上的軸壓力。為此,應盡量使橫墻成為承重和隔斷合二為一的墻體。第二,縱橫墻共同承重的結構布置。當房間較大時,設有沿進深方向的梁支承于縱墻上,使縱墻承重。樓板沿縱向擱置, 故形成橫墻承重,橫墻間距不入,一般可滿足抗震要求,同時縱墻也因軸壓力的存在而提高了抗剪能力。另一方案是縱墻承重與橫墻承重沿豎向交替布置,這種方案實際應用不多。第三縱墻承重的結構布置。該種布置方案,橫墻間距大、數量小,且軸壓力較小,故對抗震不利;縱墻多易引起彎曲破壞,應慎重選用。第四,混合承重結構布置。這種布置可有多種布置方式,如內框架砌體結構、底層框架砌體結構及局部框架砌體結構等。這種結構體系由兩種結構材料彈性模量和動力性能相差很大的兩種結構體系組成,因而不是一種良好的抗震結構形式。但因其能滿足建筑使用要求,提供較大的使用空間,且結構經濟、方便施工,應用較多。總之,選擇哪種砌體結構是抗震結構設計中的關鍵環節,應從抗震的概念設計出發,綜合建筑使用功能、技術、經濟和施工等方面進行選擇。
4、高層建筑結構設計中的側移和振動周期建筑結構的建筑結構的振動周期問題包含兩方面:合理控制結構的自振周期;控制結構的自振周期使其盡可能錯開場地的特征周期。(1)結構自振周期。高層建筑的自振周期(T 1)宜在下列范圍內:框架結構:T1=(0.1―0.15)N框一剪、框筒結構:T1=(0.08-0.12)N剪力墻、筒中筒結構:TI=(0.04―0.10)NN為結構層數。結構的第二周期和第三周期宜在下列范圍內:第二周期:T2=(1/3―1/5)T1;第三周期:T3=(1/5―1/7)T1。(2)共振問題。當建筑場地發生地震時,如果建筑物的自振周期和場地的特征周期接近,建筑物和場地就會發生共振。因此在建筑方案設計時就應針對預估的建筑場地特征周期,通過調整結構的層數,選擇合適的結構類別和結構體系,擴大建筑物的自振周期與建筑場地特征周期的差別,避免共振的發生。(3)水平位移特征。水平位移滿足高層規程的要求,并不能說明該結構是合理的設計。同時還需要考慮周期及地震力的大小等綜合因素。因為結構抗震設計時,地震力的大小與結構剛度直接相關,當結構剛度小,結構并不合理時,由于地震力小則結構位移也小,位移在規范允許范圍內,此時并不能認為該結構合理。因為結構周期長、地震力小并不安全。其次,位移曲線應連續變化,除沿豎向發生剛度突變外。不應有明顯的拐點或折點。一般情況下剪力墻結構的位移曲線應為彎曲型。框架結構的位移曲線應為剪切型t框一剪結構和框一筒結構的位移曲線應為彎剪型。
參考文獻:【1】趙西安.現代高層建筑結構設計[M].北京:科學出版社,2004